Novel 3S-shaped biophotonic sensor utilizing MoS2-NSs/ZnO-NWs/AuCu-NCs for rapid detection of Shigella flexneri bacteria
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255674" target="_blank" >RIV/61989100:27240/24:10255674 - isvavai.cz</a>
Result on the web
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85206147870&origin=resultslist" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85206147870&origin=resultslist</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0223660" target="_blank" >10.1063/5.0223660</a>
Alternative languages
Result language
angličtina
Original language name
Novel 3S-shaped biophotonic sensor utilizing MoS2-NSs/ZnO-NWs/AuCu-NCs for rapid detection of Shigella flexneri bacteria
Original language description
This paper describes a unique, extremely sensitive biophotonic sensor with a three-tier S-tapered (3S) structure. It is designed for the real-time detection of Shigella flexneri (S. flexneri), a common foodborne pathogen that causes severe gastrointestinal diseases. The sensor development includes three distinct diameters of S-tapered structures. The performance of tapered sections was improved by using molybdenum disulfide nanosheets (MoS2-NSs), zinc oxide nanowires (ZnO-NWs), and photoluminescent bimetallic gold-copper nanoclusters (AuCu-NCs). These nanoparticles greatly improve the sensor's performance. The sensor is further functionalized using anti-S. flexneri antibodies, allowing for the precise detection and capture of the target bacterium. The results show that the sensor can detect S. flexneri rapidly and accurately, with a linear detection range of 1-108 colony-forming units per milliliter (CFU/ml) and a low detection limit of 4.412 CFU/ml. In addition, the sensor's ability to identify S. flexneri biofilms is demonstrated. Biofilm detection allows us to better understand and control biofilm concerns in the environment, equipment, and biomedical devices. Aptamer examines confirm the sensor's ability to detect S. flexneri from the lateral direction. This study makes a significant contribution to the field of biosensing because no biophotonic sensor has previously been developed specifically for the detection of S. flexneri, fulfilling a critical gap in the arena of food safety and pathogen detection. The 3S sensor's performance, robustness, and potential for practical applications make it an important addition to the field of photonics.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20200 - Electrical engineering, Electronic engineering, Information engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APL Photonics
ISSN
2378-0967
e-ISSN
2378-0967
Volume of the periodical
9
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
1-14
UT code for WoS article
001331020300001
EID of the result in the Scopus database
2-s2.0-85206147870