All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Explainable AI and optimized solar power generation forecasting model based on environmental conditions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256319" target="_blank" >RIV/61989100:27240/24:10256319 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308002" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0308002</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0308002" target="_blank" >10.1371/journal.pone.0308002</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Explainable AI and optimized solar power generation forecasting model based on environmental conditions

  • Original language description

    This paper proposes a model called X-LSTM-EO, which integrates explainable artificial intelligence (XAI), long short-term memory (LSTM), and equilibrium optimizer (EO) to reliably forecast solar power generation. The LSTM component forecasts power generation rates based on environmental conditions, while the EO component optimizes the LSTM model&apos;s hyper-parameters through training. The XAI-based Local Interpretable and Model-independent Explanation (LIME) is adapted to identify the critical factors that influence the accuracy of the power generation forecasts model in smart solar systems. The effectiveness of the proposed X-LSTM-EO model is evaluated through the use of five metrics; R-squared (R2), root mean square error (RMSE), coefficient of variation (COV), mean absolute error (MAE), and efficiency coefficient (EC). The proposed model gains values 0.99, 0.46, 0.35, 0.229, and 0.95, for R2, RMSE, COV, MAE, and EC respectively. The results of this paper improve the performance of the original model&apos;s conventional LSTM, where the improvement rate is; 148%, 21%, 27%, 20%, 134% for R2, RMSE, COV, MAE, and EC respectively. The performance of LSTM is compared with other machine learning algorithm such as Decision tree (DT), Linear regression (LR) and Gradient Boosting. It was shown that the LSTM model worked better than DT and LR when the results were compared. Additionally, the PSO optimizer was employed instead of the EO optimizer to validate the outcomes, which further demonstrated the efficacy of the EO optimizer. The experimental results and simulations demonstrate that the proposed model can accurately estimate PV power generation in response to abrupt changes in power generation patterns. Moreover, the proposed model might assist in optimizing the operations of photovoltaic power units. The proposed model is implemented utilizing TensorFlow and Keras within the Google Collab environment.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS One

  • ISSN

    1932-6203

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    10

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    33

  • Pages from-to

  • UT code for WoS article

    001326970300023

  • EID of the result in the Scopus database