All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

THE INFLUENCE OF HYDROGEN ON THE MECHANICAL PROPERTIES OF TRIP 780 STEEL

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F17%3A10238152" target="_blank" >RIV/61989100:27350/17:10238152 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27360/17:10238152

  • Result on the web

    <a href="https://www.metalconference.eu/files/uploads/02/METAL2017_conference_proceedings_content.pdf" target="_blank" >https://www.metalconference.eu/files/uploads/02/METAL2017_conference_proceedings_content.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    THE INFLUENCE OF HYDROGEN ON THE MECHANICAL PROPERTIES OF TRIP 780 STEEL

  • Original language description

    The susceptibility to the hydrogen embrittlement of commercial heat of TRIP 780 steel of the type C-Mn-Si was studied on previously hydrogenated samples by a slow strain rate tensile tests (SSRT) in the initial state and in the state after 5% deformation in the longitudinal and transverse directions relative to the rolling direction. Samples were hydrogenated in 0.1N sulfuric acid solution with the addition of KSCN. Due to the transformation of retained austenite to deformation-induced martensite after 5% deformation, an increase of yield strength of 230 MPa, a tensile strength of 30 MPa and elongation at fracture decrease by 6.5 % occurred in contrast with the initial state without hydrogen. The presence of hydrogen in the steel in the initial state caused a decrease of steel strength from 900 MPa to 753 MPa, and a significant reduction in elongation at fracture from 34 % to 6 %. Hydrogen present in the samples after the 5% deformation had an effect on an increase of the yield strength by 60 MPa, a decrease in the tensile strength by 100 MPa, while the elongation at fracture reached only 2.5 %. There were no differences found in the mechanical properties of the samples taken in the longitudinal and transverse direction relative to the rolling direction. Fracture surfaces of the tensile test bars were subjected to fractographic analysis. For hydrogenated samples, the proportion of brittle fracture and quasi-cleavage fracture increased.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/LO1203" target="_blank" >LO1203: Regional Materials Science and Technology Centre - Feasibility Program</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    METAL 2017: conference proceedings : 26th International Conference on Metallurgy and Materials : (reviewed version) : May 24th-26th 2017, Hotel Voroněž I, Brno, Czech Republic, EU

  • ISBN

    978-80-87294-79-6

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    6

  • Pages from-to

    1027-1032

  • Publisher name

    Tanger

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    May 24, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000434346900164