All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

PHOTOCATALYTIC REACTIVATION OF g-C3N4 BASED NANOSORBENT

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F18%3A10239946" target="_blank" >RIV/61989100:27350/18:10239946 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27360/18:10239946 RIV/61989100:27640/18:10239946 RIV/61989100:27710/18:10239946 RIV/61989100:27740/18:10239946

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    PHOTOCATALYTIC REACTIVATION OF g-C3N4 BASED NANOSORBENT

  • Original language description

    In this work, we present new preparation method, photocatalytic activity and photocatalytic reactivation of photoactive layered graphitic carbon nitride (g-C3N4), which was incorporated into silica structure containing zinc-silicate nanoparticles (ZnO-m.SiO2). Prepared material exhibits more than ten times larger specific surface area than pure bulk g-C3N4. Material was prepared by sonication of intensively stirred aqueous solution of zinc acetate and g-C3N4 while sodium water glass was slowly added by drops into the mixture. Sodium water glass reacted with zinc acetate, which was in excess, and composite ZnO-m.SiO2 nanoparticles has precipitated on g-C3N4 nanosheets. Prepared nanodispersion was turned into powder material by vacuum freeze drying technique. This technique preserves most of particles specific surface area by conserving chaotic arrangement of given particles in water solution. Prepared powder was further calcinated at 500 oC for one hour. Photocatalytic reactivation was tested on TiO2 and ZnO-m.SiO2/g-C3N4 nanocomposite. Material was stirred in the dark with aqueous solution of methylene blue for one hour to reach an adsorption-desorption equilibrium. Material with adsorbed dye on its surface was than separated and collected from solution by centrifugation, transferred into pure demineralised water and adsorbed dye was than decomposed under LED light irradiation within half an hour. Dispersion was centrifugated again to separate by-products, dried by vacuum freeze drying and subjected to sorption process again. Although kinetic characteristics for both materials were different, sorption properties of both materials did not change after reactivation.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    21001 - Nano-materials (production and properties)

Result continuities

  • Project

    <a href="/en/project/LO1203" target="_blank" >LO1203: Regional Materials Science and Technology Centre - Feasibility Program</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2017 : conference proceedings : October 18-20, 2017, Brno, Czech Republic

  • ISBN

    978-80-87294-78-9

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    6

  • Pages from-to

    289-294

  • Publisher name

    Tanger

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 18, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000452823300048