Artificial Neural Network Modelling of Glass Laminate Sample Shape Influence on the ESPI Modes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F11%3A86081638" target="_blank" >RIV/61989100:27360/11:86081638 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Artificial Neural Network Modelling of Glass Laminate Sample Shape Influence on the ESPI Modes
Original language description
The present work is devoted to the applications of artificial neural networks (ANN) for material design prediction. We have investigated the dependence of the generated mode frequency as a function of a sample thickness and a sample shape of glass laminate samples by electronic speckle interferometry (ESPI). The obtained experimental results for differently shaped (thickness, canting and rounding) glass laminate samples are compared with those of ANN. The coincidence of both experimental and simulated results is very good.
Czech name
—
Czech description
—
Classification
Type
A - Audiovisual production
CEP classification
JG - Metallurgy, metal materials
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/FR-TI1%2F319" target="_blank" >FR-TI1/319: *Development of New Progressive Tools and Systems of Dependability Control Support of Primary Cooling on Slab Device of Continuous Casting for Quality Improvement of Demanding Flat Products</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
—
Place of publication
—
Publisher/client name
—
Version
—
Carrier ID
—