All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Structure and phase composition of Tb3Co0.6Cu0.4 alloys for efficient additions to Nd-Fe-B sintered magnets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F17%3A10238193" target="_blank" >RIV/61989100:27360/17:10238193 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Structure and phase composition of Tb3Co0.6Cu0.4 alloys for efficient additions to Nd-Fe-B sintered magnets

  • Original language description

    Currently, many attempts have been taken to enhance the coercivity and reduce the heavy rare-earth consumption of Nd-Fe-B sintered magnets simultaneously. Some progresses have been made in efforts to introduce Dy and/or Tb in many forms, namely, oxides, fluorides, hydrides, intermetallic compounds and alloys. The Tb3Co0.6Cu0.4 composition was suggested to apply it as the efficient addition in manufacturing sintered Nd-Fe-B-based magnets. The alloy was prepared by arc melting in purified argon atmosphere, annealed at 600 °C for 90 h and subsequently subjected to hydrogenation. The phase composition and structure of the initial and hydrogenated alloy were studied by electron microscopy, electron microprobe and X-ray diffraction analyses. The in part substitution of copper for cobalt does not change the orthorhombic Fe3C-type structure (space group Pnma) of the Tb3Co compound. The copper solubility in the Tb3Co and Tb12Co7 compounds was determined and the lattice parameters of the compositions were estimated. During hydrogenation, the Tb3Co0.6Cu0.4 composition was shown to decompose into TbH2-3 hydride and fine dispersed (Co, Cu) mixture. Additions of the hydrogenated compound to Nd-Fe-B-based sintered magnets (the initial composition (wt.%) is Nd-24.0, Pr-6.5, Dy-0.5, B-1.0, Al-0.2, Fe-balance was prepared by strip-casting technique and subjected to hydrogen decrepitation) allow us to manufacture magnets with Br = 1.35 T and jHc = 1336 kA/m.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20501 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/LO1203" target="_blank" >LO1203: Regional Materials Science and Technology Centre - Feasibility Program</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    METAL 2017: conference proceedings : 26th International Conference on Metallurgy and Materials : (reviewed version) : May 24th-26th 2017, Hotel Voroněž I, Brno, Czech Republic, EU

  • ISBN

    978-80-87294-79-6

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    6

  • Pages from-to

    1775-1780

  • Publisher name

    Tanger

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    May 24, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article