Low-temperature hysteretic properties of Pr-Ho-Fe-B magnets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F18%3A10241397" target="_blank" >RIV/61989100:27360/18:10241397 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Low-temperature hysteretic properties of Pr-Ho-Fe-B magnets
Original language description
Sintered permanent magnets based on the Nd2Fe14B intermetallic compound are widely used in industry as a rule in a temperature range of from -60 to 150 oC. However, in recent years, there appears a need to use such magnets at cryogenic temperatures and mainly at liquid nitrogen temperature (77 K). The natural increase in Br of Nd-Fe-B magnets with falling temperatures is well known phenomenon but it is limited to temperatures above 135 K due to the spin-reorientation in Nd2Fe14B-based alloys. At this temperature, the easy-axis magnetic anisotropy changes to easy-axes cone anisotropy. The Pr2Fe14B compound exhibits no spin-reorientation transition up to cryogenic temperatures. Therefore, permanent magnets based on Pr2Fe14B compound are of interest for investigators owing to the capability of these magnets to remain high hysteretic parameters at low and cryogenic temperatures. In this case, the natural increase in the hysteretic parameters with decreasing temperature can be adequately used. The Pr2Fe14B-based magnets (Pr-Fe-Ti-Al-Cu-B) were prepared by traditional powder metallurgy technology, and 3 wt.% HoH2 was added to the main powder at the fine-milling stage. The structure of the magnets was studied in detail by scanning electron microscopy (SEM/EDX) and the formation of pronounced so-called "core-shell" structure was demonstrated. The effect of HoH2 hydride addition on the hysteresis loop parameters of sintered Pr-Fe-Ti-Al-Cu-B magnets was studied and the marked improvement of hysteretic parameters was found. Domain structure of the magnets was studied perpendicular and parallel to the magnet texture using magnetic force microscopy. The data obtained indicate the well-formed magnetic texture. The average domain width is 1.2-1.8 μm. (C) 2018 TANGER Ltd., Ostrava.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
<a href="/en/project/LTARF18031" target="_blank" >LTARF18031: Development of physico-chemical and engineering foundations for the initiation of innovative resources-economy technology of high-power and high-coercivity (Nd,R)-Fe-B (R = Pr, Tb, Dy, Ho) low-REM permanent magnets</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
METAL 2018 : conference proceedings : reviewed version : 27th International Conference on Metallurgy and Materials : May 23rd-25th 2018, Hotel Voronez I, Brno, Czech Republic, EU
ISBN
978-80-87294-84-0
ISSN
—
e-ISSN
neuvedeno
Number of pages
7
Pages from-to
1520-1526
Publisher name
Tanger
Place of publication
Ostrava
Event location
Brno
Event date
May 23, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—