All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Microstructure investigation of strip-cast Nd-Fe-B alloy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F19%3A10244336" target="_blank" >RIV/61989100:27360/19:10244336 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Microstructure investigation of strip-cast Nd-Fe-B alloy

  • Original language description

    The microstructure of initial Nd-Fe-B alloy has the substantial effect on the processing and the hysteretic properties of sintered Nd-Fe-B-based magnets. This work is aimed at the structural characterization of the strip-cast Nd-Fe-B alloy, which will be used as the matrix alloy for the preparation of magnets with variable set of functional parameters via the application of REM hydrides or hydrogenated REM compounds added to the powder mixture and using processes of grain boundary diffusion and grain boundary structuring. The microstructure, phase composition and distribution of Nd in the structural components of the strip-cast alloy were investigated by SEM/EDX, DTA and XRD methods. The nucleation region in the contact area between the cooling wheel and melt and radially grown Nd2Fe14B dendritic structure was observed. Individual dendrite arms are characterized by different crystal orientations and a thickness of 2 to 5 µm. In the interdendritic regions, the R-rich phase with a variable ratio of Nd/Fe is present. In this region, the NdFe4B4 compound was also identified as the minority phase. The X-ray elemental map showed the increased boron content in this phase. Major diffraction peaks in the XRD patterns could be indexed to either Nd2Fe14B or Nd-based phases. According to DTA data obtaining upon heating, the first peak is recorded in the temperature range of 693 to 731 oC which is probably related to the decomposition of NdFe4B4 phase. Other peak in a range of from 980 to 1061 oC is related to the melting of Nd-rich phases. (C) 2019 TANGER Ltd., Ostrava.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20500 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/LTARF18031" target="_blank" >LTARF18031: Development of physico-chemical and engineering foundations for the initiation of innovative resources-economy technology of high-power and high-coercivity (Nd,R)-Fe-B (R = Pr, Tb, Dy, Ho) low-REM permanent magnets</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    METAL 2019 : conference proceedings : peer reviewed : 28th International Conference on Metallurgy and Materials : May 22nd-24th 2019, Hotel Voronez I, Brno, Czech Republic, EU

  • ISBN

    978-80-87294-92-5

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    1357-1362

  • Publisher name

    Tanger

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    May 22, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article