All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The composite water swollen spiral wound membrane module for raw biogas purification

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F23%3A10252440" target="_blank" >RIV/61989100:27360/23:10252440 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27710/23:10252440

  • Result on the web

    <a href="https://membranes.org/wp-content/uploads/2023/05/NAMS-2023-Program-Book-05122023.pdf" target="_blank" >https://membranes.org/wp-content/uploads/2023/05/NAMS-2023-Program-Book-05122023.pdf</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The composite water swollen spiral wound membrane module for raw biogas purification

  • Original language description

    Thin film composite membranes have molecular-level sieving structures consisting of multiple polymeric layers. The three-layer film configuration has good mechanical stability and high selectivity for undesired materials with a high filtration rate [1]. The top layer is a dense perm-selective barrier of thickness around 1 μm, made of polyamide that swells in water [2]. Two other layers are prepared thicker than the top layer to ensure mechanical rigidity with higher porosity. This work used a water-swollen spiral-wound membrane filter to separate CH4 from two types of feed streams: a synthetic binary mixture of CO2 and raw agro-biogas with CH4. At a pressure of 3 bar of the synthetic biogas, CH4 content increased from 52 vol% of the feed stream to 98 vol% of the retentate stream. Two modules aligned in parallel increased the recovery ratio by 8.5% from the single filter operation, which is ascribed to doubled biogas retention time in the parallel filters by bisecting the feed stream. The water-swollen membrane technology developed in this study proved efficient in producing high-quality biomethane and desulfurizing feed biogas. The retentate streams had a biomethane concentration of 95-98 vol% of pure CH4 and a low concentration of H2S of an order of 10 ppmv. Experimental controlling factors include, but are not limited to, the feed flow rate, applied pressure, membrane properties, and module configuration. More extensive experimental research with theoretical analysis is required to improve biomethane production further using water-swollen membrane technology. Poster at the conference NAMS 2023.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    20400 - Chemical engineering

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů