A Similarity Model of Specific Heat Loss Determined by Dimensional Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F23%3A10252571" target="_blank" >RIV/61989100:27360/23:10252571 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2076-3417/13/14/8055" target="_blank" >https://www.mdpi.com/2076-3417/13/14/8055</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app13148055" target="_blank" >10.3390/app13148055</a>
Alternative languages
Result language
angličtina
Original language name
A Similarity Model of Specific Heat Loss Determined by Dimensional Analysis
Original language description
This article describes an innovative method for the determination of heat flow (specific heat loss; linear heat flow density) from a one-metre length of a twin pipe directly-buried heat network. Such heat losses are currently described by applying analytical procedures based on the heat transfer theory. It is rather complicated to accurately express the heat loss using such procedures, due to the necessity to determine the individual values of thermal resistance. A simpler method to express heat loss is the balance method, as it requires measuring a temperature gradient Δt between the starting point of the heat network and the end point of the heat collection. A suitable measuring device must provide high-accuracy measurements of the temperature. In the case of very well-insulated distribution pipelines and short pipes, the temperature measurements must be accurate to the hundredths of a degree Celsius. It is impossible to install such devices as fixed equipment on every heat distribution network, due to such networks measuring many kilometres and the cost of the appropriate measuring technology. For the aforesaid reasons, the authors created a mathematical model for specific heat losses based on dimensional analysis. This method facilitates the identification of dimensionless criteria based on the relevant dimensional quantities. Functional correlations between the identified criteria may be identified on the basis of the results of physical or numerical experiments. In this study, a database of the results obtained from physical experiments conducted on two heat networks was used. The output of the similarity model was a function describing the heat flow from a one-meter pipe length that was applicable to various alternatives in relation to the geometrical, physical and boundary conditions. The standard deviation of a difference in the heat losses identified by applying the balance method and using the proposed criterial equation for a twin pipe directly-buried pre-insulated heat network was 0.515 W/m.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20500 - Materials engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Sciences
ISSN
2076-3417
e-ISSN
2076-3417
Volume of the periodical
13
Issue of the periodical within the volume
14
Country of publishing house
CH - SWITZERLAND
Number of pages
10
Pages from-to
"10 July 2023"
UT code for WoS article
001037973600001
EID of the result in the Scopus database
—