All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The metrizability problem for Lorentz-invariant affine connections

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27600%2F16%3A86097590" target="_blank" >RIV/61989100:27600/16:86097590 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1142/S0219887816501103" target="_blank" >http://dx.doi.org/10.1142/S0219887816501103</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0219887816501103" target="_blank" >10.1142/S0219887816501103</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The metrizability problem for Lorentz-invariant affine connections

  • Original language description

    The invariant metrizability problem for affine connections on a manifold, formulated by Tanaka and Krupka for connected Lie groups actions, is considered in the particular cases of Lorentz and Poincaré (inhomogeneous Lorentz) groups. Conditions under which an affine connection on the open submanifold R x (R3 {(0, 0, 0)}) of the Euclidean space R4 coincides with the Levi-Civita connection of some SO(3, 1), respectively (R4 xs SO(3, 1))- invariant metric field are studied. We give complete description of metrizable Lorentz-invariant connections. Explicit solutions (metric fields) of the invariant metrizability equations are found and their properties are discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Geometric Methods in Modern Physics

  • ISSN

    0219-8878

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    12

  • Pages from-to

    "1650110 (12 pages)"

  • UT code for WoS article

    000383979300015

  • EID of the result in the Scopus database

    2-s2.0-84978052436