The metrizability problem for Lorentz-invariant affine connections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27600%2F16%3A86097590" target="_blank" >RIV/61989100:27600/16:86097590 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1142/S0219887816501103" target="_blank" >http://dx.doi.org/10.1142/S0219887816501103</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0219887816501103" target="_blank" >10.1142/S0219887816501103</a>
Alternative languages
Result language
angličtina
Original language name
The metrizability problem for Lorentz-invariant affine connections
Original language description
The invariant metrizability problem for affine connections on a manifold, formulated by Tanaka and Krupka for connected Lie groups actions, is considered in the particular cases of Lorentz and Poincaré (inhomogeneous Lorentz) groups. Conditions under which an affine connection on the open submanifold R x (R3 {(0, 0, 0)}) of the Euclidean space R4 coincides with the Levi-Civita connection of some SO(3, 1), respectively (R4 xs SO(3, 1))- invariant metric field are studied. We give complete description of metrizable Lorentz-invariant connections. Explicit solutions (metric fields) of the invariant metrizability equations are found and their properties are discussed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Geometric Methods in Modern Physics
ISSN
0219-8878
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
8
Country of publishing house
SG - SINGAPORE
Number of pages
12
Pages from-to
"1650110 (12 pages)"
UT code for WoS article
000383979300015
EID of the result in the Scopus database
2-s2.0-84978052436