Simple one-pot hydrothermal synthesis and photocatalytic activity of ZnS and ZnS/kaolinite nanocomposite
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F19%3A10239512" target="_blank" >RIV/61989100:27640/19:10239512 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/19:10239512
Result on the web
<a href="https://www.nanocon.eu/files/uploads/01/NANOCON2018%20-%20Conference%20Proceedings_content.pdf" target="_blank" >https://www.nanocon.eu/files/uploads/01/NANOCON2018%20-%20Conference%20Proceedings_content.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Simple one-pot hydrothermal synthesis and photocatalytic activity of ZnS and ZnS/kaolinite nanocomposite
Original language description
This study is focused on preparation of pristine zinc sulphide (ZnS) and zinc sulphide/kaolinite (ZnS/K) nanocomposite using one-pot hydrothermal synthesis under atmospheric pressure and without any surfactant. Together with finding a simple preparation method, the aim was to achieve a high photocatalytic activity, and also reduce the environmental risk of ZnS (in the case of ZnS/K). Pristine ZnS was synthesized from aqueous solutions of zinc chloride and sodium sulphide in various ratios. ZnS/K nanocomposite was prepared similarly by addition of kaolin KKAF into the mixture of zinc chloride and sodium sulfide solutions. Reaction mixtures were continuously stirred at 100oC for several hours, resulting white solids were separated by centrifugation, washed with distilled water, and dried at 105oC overnight. X-ray powder diffraction analysis revealed the presence of cubic modification sphalerite both in ZnS and ZnS/K samples. Amount of ZnS in ZnS/K (~32 wt.%) was determined by Rietveld method which also confirmed the sphalerite structure. Morphology of the samples was observed using scanning electron microscopy. In the case of ZnS/K, the ZnS nanoparticles anchored on the kaolinite surface were observed. Photocatalytic activity evaluated using discoloration of Acid Orange 7 (AO7) in a liquid phase was found very high for ZnS samples. After 1 h of UV irradiation, ~99% of AO7 was degraded by ZnS. Photodegradation efficiency reached 96% in the case of ZnS/K. Taking into account that only ~32 wt.% of ZnS is present in ZnS/K, the photocatalytic activity of the nanocomposite can be considered three times higher compared to pristine ZnS.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
21001 - Nano-materials (production and properties)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
NANOCON 2018 : 10th Anniversary International Conference on Nanomaterials - research & application : conference proceedings : peer reviewed : October 17th-19th 2018, Hotel Voroněž I, Brno, Czech Republic, EU
ISBN
978-80-87294-89-5
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
146-151
Publisher name
Tanger
Place of publication
Ostrava
Event location
Brno
Event date
Oct 17, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000513131900025