All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Source apportionment of magnetite particles in roadside airborne particulate matter

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27690%2F21%3A10246420" target="_blank" >RIV/61989100:27690/21:10246420 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0048969720353572" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0048969720353572</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2020.141828" target="_blank" >10.1016/j.scitotenv.2020.141828</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Source apportionment of magnetite particles in roadside airborne particulate matter

  • Original language description

    Exposure to airborne particulate matter (PM) is associated with pulmonary, cardiovascular and neurological problems. Magnetite, a mixed Fe2+/Fe3+ oxide, is ubiquitous and abundant in PM in urban environments, and might play a specific role in both neurodegeneration and cardiovascular disease. We collected samples of vehicle exhaust emissions, and of heavily-trafficked roadside and urban background dusts from Lancaster and Birmingham, U.K. Then, we measured their saturation magnetic remanence and used magnetic component analysis to separate the magnetite signal from other contributing magnetic components. Lastly, we estimated the contributions made by specific traffic-related sources of magnetite to the total airborne magnetite in the roadside environment. The concentration of magnetite in exhaust emissions is much lower (3-14 x lower) than that in heavily-trafficked roadside PM. The magnetite concentration in petrol-engine exhaust emissions is between similar to 0.06 and 0.12 wt%; in diesel-engine exhaust emissions similar to 0.08-0.18 wt%; in background dust similar to 0.05-0.20 wt% and in roadside dust similar to 0.18-0.95 wt%. Here, we show that vehicle brake wear is responsible for between similar to 68 and 85% of the total airborne magnetite at the two U.K. roadside sites. In comparison, diesel-engine exhaust emissions account for similar to 7% - 12%, petrol-engine exhaust emissions for similar to 2% - 4%, and background dust for 6% - 10%. Thus, vehicle brake wear is by far the most dominant source of airborne magnetite in the roadside environment at the two sites examined. Given the potential risk posed, post-inhalation, by ultrafine magnetite and co-associated transition metal-rich particles to human cardiovascular and neurological health, the high magnetite content of vehicle brake wear might need to be reduced in order to mitigate such risk, especially for vulnerable population groups. (C) 2020 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

    1879-1026

  • Volume of the periodical

    752

  • Issue of the periodical within the volume

    21.8.2020

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000588243900048

  • EID of the result in the Scopus database