Calculating torque, back-EMF, inductance, and unbalanced magnetic force for a hybrid electrical vehicle by in-wheel drive application
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F24%3A10255361" target="_blank" >RIV/61989100:27730/24:10255361 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41598-024-63702-8" target="_blank" >https://www.nature.com/articles/s41598-024-63702-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-024-63702-8" target="_blank" >10.1038/s41598-024-63702-8</a>
Alternative languages
Result language
angličtina
Original language name
Calculating torque, back-EMF, inductance, and unbalanced magnetic force for a hybrid electrical vehicle by in-wheel drive application
Original language description
To use a Hybrid Excitation Synchronous Machine (HESM) in a hybrid electrical vehicle (HEV), its performance indicators such as back-EMF, inductance and unbalanced magnetic force should be computed preferably by an analytical method. First, the back-EMF is calculated by considering alternate-teeth and all-teeth non-overlapping and overlapping windings. The effects of three types of magnetization patterns including the radial, parallel and Halbach magnetizations on the back-EMF waveform have also been investigated. Then, the self-inductance of the stator and rotor windings, the mutual inductance between the stator and rotor windings, and the mutual inductance between the stator phases are computed. Next, the components of the unbalanced magnetic force (UMF) in the direction of the x and y axes and its amplitude are computed. Moreover, the effects of the magnetization patterns on those magnetic pulls are investigated. To minimize the UMFs, symmetry must be implemented in the excitation sources; therefore, first the stator winding then the permanent magnet and rotor winding are modified in such a way that the UMFs are reduced. Increasing the temperature leads to a weakening of the magnet's residual flux density, which strongly affects the performance characteristics of the electric machine such as Back-EMF and UMF. Finally, the ratio of the permanent magnet flux to the rotor flux is determined in such a way that the average torque is maximized. In this section, the effects of three magnetization patterns will be investigated. (C) The Author(s) 2024.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20200 - Electrical engineering, Electronic engineering, Information engineering
Result continuities
Project
<a href="/en/project/TN02000025" target="_blank" >TN02000025: National Centre for Energy II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Volume of the periodical
14
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
18
Pages from-to
nestránkováno
UT code for WoS article
001244399200009
EID of the result in the Scopus database
2-s2.0-85195342838