All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A NEURAL-VISUALIZATION IDS FOR HONEYNET DATA

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F12%3A86084429" target="_blank" >RIV/61989100:27740/12:86084429 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1142/S0129065712500050" target="_blank" >http://dx.doi.org/10.1142/S0129065712500050</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1142/S0129065712500050" target="_blank" >10.1142/S0129065712500050</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A NEURAL-VISUALIZATION IDS FOR HONEYNET DATA

  • Original language description

    Neural intelligent systems can provide a visualization of the network traffic for security staff, in order to reduce the widely known high false-positive rate associated with misuse-based Intrusion Detection Systems (IDSs). Unlike previous work, this study proposes an unsupervised neural models that generate an intuitive visualization of the captured traffic, rather than network statistics. These snapshots of network events are immensely useful for security personnel that monitor network behavior. The system is based on the use of different neural projection and unsupervised methods for the visual inspection of honeypot data, and may be seen as a complementary network security tool that sheds light on internal data structures through visual inspectionof the traffic itself. Furthermore, it is intended to facilitate verification and assessment of Snort performance (a well-known and widely-used misuse-based IDS), through the visualization of attack patterns. Empirical verification and co

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Neural Systems

  • ISSN

    0129-0657

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    SG - SINGAPORE

  • Number of pages

    18

  • Pages from-to

    1-18

  • UT code for WoS article

    000302210200005

  • EID of the result in the Scopus database