All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Traffic speed prediction using ensemble kalman filter and differential evolution

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F19%3A10244139" target="_blank" >RIV/61989100:27740/19:10244139 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.matec-conferences.org/articles/matecconf/abs/2019/08/matecconf_ictle2019_02001/matecconf_ictle2019_02001.html" target="_blank" >https://www.matec-conferences.org/articles/matecconf/abs/2019/08/matecconf_ictle2019_02001/matecconf_ictle2019_02001.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/matecconf/201925902001" target="_blank" >10.1051/matecconf/201925902001</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Traffic speed prediction using ensemble kalman filter and differential evolution

  • Original language description

    Importance of traffic state prediction steadily increases with growing volume of traffic. Ability to predict traffic speed in short to medium horizon (i.e. up to one hour) is one of the main tasks of every newly developed Intelligent Transportation System. There are two possible approaches to this prediction. The first is to utilize physical properties of the traffic flow to construct an exact or approximate numerical model. This approach is, however, almost impossible to implement on a larger scale given the difficulty to obtain enough traffic data to describe the starting and boundary conditions of the model. The other option is to use historical traffic data and relate information and patterns they contain to the current traffic state by application of some form of statistical or machine learning approach. We propose to use combination of Ensemble Kalman filter and Cell Transmission Model for this task. These models combine properties of physical model with ability to incorporate uncertainty of the traffic data.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    MATEC Web of Conferences. Volume 259

  • ISBN

  • ISSN

    2261-236X

  • e-ISSN

  • Number of pages

    7

  • Pages from-to

    7

  • Publisher name

    EDP Sciences

  • Place of publication

    Paříž

  • Event location

    Bangkok

  • Event date

    Aug 3, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000471300400005