On the spectrum of Schur complements of 2D elastic clusters joined by rigid edge modes and hybrid domain decomposition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F22%3A10250238" target="_blank" >RIV/61989100:27740/22:10250238 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27240/22:10250238
Result on the web
<a href="https://link.springer.com/article/10.1007/s00211-022-01307-x" target="_blank" >https://link.springer.com/article/10.1007/s00211-022-01307-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00211-022-01307-x" target="_blank" >10.1007/s00211-022-01307-x</a>
Alternative languages
Result language
angličtina
Original language name
On the spectrum of Schur complements of 2D elastic clusters joined by rigid edge modes and hybrid domain decomposition
Original language description
The hybrid FETI-DP method proposed by Klawonn and Rheinbach uses a two-level decomposition of the domain into subdomains and clusters. Here we give bounds on the regular condition number of the clusters obtained by interconnecting the Schur complements of square elastic subdomains by the average rigid body modes of adjacent edges. Using the angles of subspaces and bounds on the spectrum of the subdomains' Schur complements, we show that the conditioning of clusters comprising in x m square subdomains increases proportionally to m. The estimate supports the scalability of the unpreconditioned hybrid FETI-DP method for both linear and contact problems. The numerical experiments confirm the efficiency of a coarse grid split between the primal and dual variables and indicate that hybrid FETI-DP with large clusters is a competitive tool for solving huge elasticity problems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
—
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Numerische Mathematik
ISSN
0029-599X
e-ISSN
0945-3245
Volume of the periodical
152
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
26
Pages from-to
41-66
UT code for WoS article
000838464900001
EID of the result in the Scopus database
2-s2.0-85136958205