Applications of AI for Anomaly Detection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F23%3A10252587" target="_blank" >RIV/61989100:27740/23:10252587 - isvavai.cz</a>
Result on the web
<a href="https://events.it4i.cz/event/159/" target="_blank" >https://events.it4i.cz/event/159/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Applications of AI for Anomaly Detection
Original language description
Detecting anomalies is challenging as it is hard to retrieve labeled training data for supervised training. Anomalies are after all events that occur less likely and sporadically. They also can show a broad range of effects which not all can be covered during training.Different approaches are hence needed in order to train the machine and deep learning models for identifying situations that are rare and cannot be (fully) labeled.This course covered three different methods, using XGBoost, Autoencoders, and Generative Adversarial Networks (GANs). For each, detailed hands-on exercises were provided to learn how to use these methods and how to tackle the lack of labeled training data.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/MC2301" target="_blank" >MC2301: National Competence Centres in the framework of EuroHPC Phase 2 - EUROCC 2</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů