Obviating Ligand Exchange Preserves the Intact Surface of HgTe Colloidal Quantum Dots and Enhances Performance of Short Wavelength Infrared Photodetectors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254127" target="_blank" >RIV/61989100:27740/24:10254127 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/10.1002/adma.202306518" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/adma.202306518</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adma.202306518" target="_blank" >10.1002/adma.202306518</a>
Alternative languages
Result language
angličtina
Original language name
Obviating Ligand Exchange Preserves the Intact Surface of HgTe Colloidal Quantum Dots and Enhances Performance of Short Wavelength Infrared Photodetectors
Original language description
A large volume, scalable synthesis procedure of HgTe quantum dots (QDs) capped initially with short-chain conductive ligands ensures ligand exchange-free and simple device fabrication. An effective n- or p-type self-doping of HgTe QDs is achieved by varying cation-anion ratio, as well as shifting the Fermi level position by introducing single- or double-cyclic thiol ligands, that is, 2-furanmethanethiol (FMT) or 2,5-dimercapto-3,4-thiadiasole (DMTD) in the synthesis. This allows for preserving the intact surface of the HgTe QDs, thus ensuring a one order of magnitude reduced surface trap density compared with HgTe subjected to solid-state ligand exchange. The charge carrier diffusion length can be extended from 50 to 90 nm when the device active area consists of a bi-layer of cation-rich HgTe QDs capped with DMTD and FMT, respectively. As a result, the responsivity under 1340 nm illumination is boosted to 1 AWMINUS SIGN 1 at zero bias and up to 40 AWMINUS SIGN 1 under MINUS SIGN 1 V bias at room temperature. Due to high noise current density, the specific detectivity of these photodetectors reaches up to 1010 Jones at room temperature and under an inert atmosphere. Meanwhile, high photoconductive gain ensures a rise in the external quantum efficiency of up to 1000% under reverse bias.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10400 - Chemical sciences
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Advanced Materials
ISSN
0935-9648
e-ISSN
1521-4095
Volume of the periodical
36
Issue of the periodical within the volume
17
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
—
UT code for WoS article
001102489800001
EID of the result in the Scopus database
2-s2.0-85176561300