Optimizing parameters in swarm intelligence using reinforcement learning: An application of Proximal Policy Optimization to the iSOMA algorithm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10254282" target="_blank" >RIV/61989100:27740/24:10254282 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27240/24:10254282 RIV/61989100:27730/24:10254282
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2210650224000208" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2210650224000208</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.swevo.2024.101487" target="_blank" >10.1016/j.swevo.2024.101487</a>
Alternative languages
Result language
angličtina
Original language name
Optimizing parameters in swarm intelligence using reinforcement learning: An application of Proximal Policy Optimization to the iSOMA algorithm
Original language description
This paper presents a new algorithm for optimizing parameters in swarm algorithm using reinforcement learning. The algorithm, called iSOMA-RL, is based on the iSOMA algorithm, a population-based optimization algorithm that mimics the competition-cooperation behavior of creatures to find the optimal solution. By using reinforcement learning, iSOMA-RL can dynamically and continuously optimize parameters, which can play a crucial role in determining the performance of the algorithm but are often difficult to determine. The reinforcement learning technique used is the state-of-the-art Proximal Policy Optimization (PPO), which has been successful in many areas. The algorithm was compared to the original iSOMA algorithm and other algorithms from the SOMA family, showing better performance with only constant increase in computational complexity depending on number of function evaluations. Also we examine different sets of parameters to optimize and different reward functions. We also did comparison to widely used and state-of-the-art algorithms to illustrate improvement in performance over the original iSOMA algorithm. (C) 2024 The Authors
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/TN02000025" target="_blank" >TN02000025: National Centre for Energy II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Swarm and Evolutionary Computation
ISSN
2210-6502
e-ISSN
—
Volume of the periodical
85
Issue of the periodical within the volume
101487
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
nestránkováno
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85183455296