Effects of proline substitution/inclusion on the nanostructure of a self-assembling β-sheet-forming peptide
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256698" target="_blank" >RIV/61989100:27740/24:10256698 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15640/24:73627048
Result on the web
<a href="https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07065h" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07065h</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4ra07065h" target="_blank" >10.1039/d4ra07065h</a>
Alternative languages
Result language
angličtina
Original language name
Effects of proline substitution/inclusion on the nanostructure of a self-assembling β-sheet-forming peptide
Original language description
Self-assembling peptides remain persistently interesting objects for building nanostructures and further assemble into macroscopic structures, e.g. hydrogels, at sufficiently high concentrations. The modulation of self-assembling β-sheet-forming peptide sequences, with a selection from the full library of amino acids, offers unique possibility for rational tuning of the resulting nanostructured morphology and topology of the formed hydrogel networks. In the present work, we explored how a known β-sheet-disassembling amino acid, proline (P), affects the self-assembly and gelation properties of amphipathic peptides. For this purpose, we modified the backbone of a known β-sheet-forming peptide, FEFKFEFK (F8, F = phenylalanine, E = glutamic acid, and K = lysine), with P to form three sequences: FEFKPEFK (FP), FEFKPEFKF (KPE) and FEFEPKFKF (EPK). The replacement of F by P in the hydrophobic face resulted in the loss of the extended β-sheet conformation of the FP peptide and no gelation at concentration as high as 100 mg mL−1, compared to typical 5 mg mL−1 concentration corresponding to F8. However, by retaining four hydrophobic phenylalanine amino acids in the sequences, hydrogels containing a partial β-sheet structure were still formed at 30 mg mL−1 for KPE (pH 4-10) and EPK (pH 2-5). TEM, AFM, small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) revealed that KPE and EPK peptides self-assemble into nanoribbons and twisted nanofibers, respectively. Molecular dynamics confirmed that the single amino acid replacement of F by P prevented the assembly of the FP peptide with respect to the stable β-sheet-forming F8 variant. Moreover, additional prolongation by F in the KPE variant and shuffling of the polar amino acid sequence in the EPK peptide supported aggregation capabilities of both variants in forming distinct shapes of individual aggregates. Although the overall number of amino acids is the same in both KPE and EPK, their shifted charge density (i.e., the chemical environment in which ionic groups reside) drives self-assembly into distinct nanostructures. The investigated structural changes can contribute to new material designs for biomedical applications and provide better understanding in the area of protein folding. © 2024 The Royal Society of Chemistry.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10400 - Chemical sciences
Result continuities
Project
<a href="/en/project/EH22_008%2F0004587" target="_blank" >EH22_008/0004587: Technology Beyond Nanoscale</a><br>
Continuities
—
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
RSC Advances
ISSN
2046-2069
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
50
Country of publishing house
GB - UNITED KINGDOM
Number of pages
12
Pages from-to
37419-37430
UT code for WoS article
001364037000001
EID of the result in the Scopus database
2-s2.0-85210917934