All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Effects of proline substitution/inclusion on the nanostructure of a self-assembling β-sheet-forming peptide

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F24%3A10256698" target="_blank" >RIV/61989100:27740/24:10256698 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15640/24:73627048

  • Result on the web

    <a href="https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07065h" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra07065h</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/d4ra07065h" target="_blank" >10.1039/d4ra07065h</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Effects of proline substitution/inclusion on the nanostructure of a self-assembling β-sheet-forming peptide

  • Original language description

    Self-assembling peptides remain persistently interesting objects for building nanostructures and further assemble into macroscopic structures, e.g. hydrogels, at sufficiently high concentrations. The modulation of self-assembling β-sheet-forming peptide sequences, with a selection from the full library of amino acids, offers unique possibility for rational tuning of the resulting nanostructured morphology and topology of the formed hydrogel networks. In the present work, we explored how a known β-sheet-disassembling amino acid, proline (P), affects the self-assembly and gelation properties of amphipathic peptides. For this purpose, we modified the backbone of a known β-sheet-forming peptide, FEFKFEFK (F8, F = phenylalanine, E = glutamic acid, and K = lysine), with P to form three sequences: FEFKPEFK (FP), FEFKPEFKF (KPE) and FEFEPKFKF (EPK). The replacement of F by P in the hydrophobic face resulted in the loss of the extended β-sheet conformation of the FP peptide and no gelation at concentration as high as 100 mg mL−1, compared to typical 5 mg mL−1 concentration corresponding to F8. However, by retaining four hydrophobic phenylalanine amino acids in the sequences, hydrogels containing a partial β-sheet structure were still formed at 30 mg mL−1 for KPE (pH 4-10) and EPK (pH 2-5). TEM, AFM, small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) revealed that KPE and EPK peptides self-assemble into nanoribbons and twisted nanofibers, respectively. Molecular dynamics confirmed that the single amino acid replacement of F by P prevented the assembly of the FP peptide with respect to the stable β-sheet-forming F8 variant. Moreover, additional prolongation by F in the KPE variant and shuffling of the polar amino acid sequence in the EPK peptide supported aggregation capabilities of both variants in forming distinct shapes of individual aggregates. Although the overall number of amino acids is the same in both KPE and EPK, their shifted charge density (i.e., the chemical environment in which ionic groups reside) drives self-assembly into distinct nanostructures. The investigated structural changes can contribute to new material designs for biomedical applications and provide better understanding in the area of protein folding. © 2024 The Royal Society of Chemistry.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

    <a href="/en/project/EH22_008%2F0004587" target="_blank" >EH22_008/0004587: Technology Beyond Nanoscale</a><br>

  • Continuities

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    RSC Advances

  • ISSN

    2046-2069

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    50

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    37419-37430

  • UT code for WoS article

    001364037000001

  • EID of the result in the Scopus database

    2-s2.0-85210917934