All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F10%3A10212701" target="_blank" >RIV/61989592:15110/10:10212701 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985823:_____/10:00355107 RIV/61388971:_____/10:00355107

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism

  • Original language description

    Reactive oxygen species (ROS) originating from mitochondria are perceived as a factor contributing to cell aging. Silybin and dehydrosilybin, two polyphenolic compounds, display a plethora of biological effects generally ascribed to their known antioxidant capacity. When investigating the cytoprotective effects of these two compounds in the primary cell cultures of neonatal rat cardiomyocytes, we noted the ability of dehydrosilybin to de-energize the cells by monitoring JC-1 fluorescence. Experiments evaluating oxygen consumption and membrane potential revealed that dehydrosilybin uncouples the respiration of isolated rat heart mitochondria albeit with a much lower potency than synthetic uncouplers. We infer that the apparent uncoupler-like activity ofdehydrosilybin is the basis of its ROS modulation effect in neonatal rat cardiomyocytes and leads us to propose a hypothesis on natural ischemia preconditioning by dietary polyphenols.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CE - Biochemistry

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA303%2F08%2F0658" target="_blank" >GA303/08/0658: Modulation of uncoupling protein UcP2 and mitochondrial bioenergetics in cardiomyocytes by natural substances</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Bioenergetics and Biomembranes

  • ISSN

    0145-479X

  • e-ISSN

  • Volume of the periodical

    42

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database