Nerolidol and Farnesol Inhibit Some Cytochrome P450 Activities but Did Not Affect Other Xenobiotic-Metabolizing Enzymes in Rat and Human Hepatic Subcellular Fractions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F17%3A73580361" target="_blank" >RIV/61989592:15110/17:73580361 - isvavai.cz</a>
Alternative codes found
RIV/00216208:11160/17:10364555 RIV/00098892:_____/17:N0000058
Result on the web
<a href="http://dx.doi.org/10.3390/molecules22040509" target="_blank" >http://dx.doi.org/10.3390/molecules22040509</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/molecules22040509" target="_blank" >10.3390/molecules22040509</a>
Alternative languages
Result language
angličtina
Original language name
Nerolidol and Farnesol Inhibit Some Cytochrome P450 Activities but Did Not Affect Other Xenobiotic-Metabolizing Enzymes in Rat and Human Hepatic Subcellular Fractions
Original language description
Sesquiterpenes, 15-carbon compounds formed from three isoprenoid units, are the main components of plant essential oils. Sesquiterpenes occur in human food, but they are principally taken as components of many folk medicines and dietary supplements. The aim of our study was to test and compare the potential inhibitory effect of acyclic sesquiterpenes, trans-nerolidol, cisnerolidol and farnesol, on the activities of the main xenobiotic-metabolizing enzymes in rat and human liver in vitro. Rat and human subcellular fractions, relatively specific substrates, corresponding coenzymes and HPLC, spectrophotometric or spectrofluorometric analysis of product formation were used. The results showed significant inhibition of cytochromes P450 (namely CYP1A, CYP2B and CYP3A subfamilies) activities by all tested sesquiterpenes in rat as well as in human hepatic microsomes. On the other hand, all tested sesquiterpenes did not significantly affect the activities of carbonyl-reducing enzymes and conjugation enzymes. The results indicate that acyclic sesquiterpenes might affect CYP1A, CYP2B and CYP3A mediated metabolism of concurrently administered drugs and other xenobiotics. The possible drug–sesquiterpene interactions should be verified in in vivo experiments.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30104 - Pharmacology and pharmacy
Result continuities
Project
<a href="/en/project/GBP303%2F12%2FG163" target="_blank" >GBP303/12/G163: Centre of drug-dietary supplements interactions and nutrigenetics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Molecules
ISSN
1420-3049
e-ISSN
—
Volume of the periodical
2017
Issue of the periodical within the volume
22
Country of publishing house
CH - SWITZERLAND
Number of pages
11
Pages from-to
1-11
UT code for WoS article
000404517800007
EID of the result in the Scopus database
2-s2.0-85016257893