Leukemia Inhibitory Factor Signaling Enhances Production of Galactose-Deficient IgA1 in IgA Nephropathy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F20%3A73602951" target="_blank" >RIV/61989592:15110/20:73602951 - isvavai.cz</a>
Result on the web
<a href="https://www.karger.com/Article/Pdf/505748" target="_blank" >https://www.karger.com/Article/Pdf/505748</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1159/000505748" target="_blank" >10.1159/000505748</a>
Alternative languages
Result language
angličtina
Original language name
Leukemia Inhibitory Factor Signaling Enhances Production of Galactose-Deficient IgA1 in IgA Nephropathy
Original language description
Objectives: IgA nephropathy (IgAN) is thought to involve an autoimmune process wherein galactose-deficient IgA1 (Gd-IgA1), recognized as autoantigen by autoantibodies, forms pathogenic immune complexes. Mounting evidence has implicated abnormal activation of some protein-tyrosine kinases (PTKs) in IgAN. Furthermore, genome-wide association studies (GWAS) of IgAN provided insight into disease pathobiology and genetics. A GWAS locus on chromosome 22q12 contains genes encoding leukemia inhibitory factor (LIF) and oncostatin M, interleukin (IL)-6-related cytokines implicated in mucosal immunity and inflammation. We have previously shown that IL-6 mediates overproduction of Gd-IgA1 through aberrant STAT3 activation. Here, we show that LIF enhanced production of Gd-IgA1 in IgA1-secreting cells of patients with IgAN and provide initial analyses of LIF signaling. Methods: We characterized LIF signaling that is involved in the overproduction of Gd-IgA1, using IgA1-secreting cell lines derived from peripheral blood of patients with IgAN and healthy controls (HC). We used global PTK activity profiling, immunoblotting, lectin ELISA, and siRNA knock-down. Results: LIF stimulation did not significantly affect production of total IgA1 in IgA1-secreting cells from patients with IgAN or HC. However, LIF increased production of Gd-IgA1, but only in the cells from patients with IgAN. LIF stimulation enhanced phosphorylation of STAT1 in IgA1-secreting cells from patients with IgAN to a higher degree than in the cells from HC. siRNA knock-down of STAT1 blocked LIF-mediated overproduction of Gd-IgA1. Unexpectedly, this abnormal phosphorylation of STAT1 in IgA1-secreting cells from patients with IgAN was not mediated by JAK, but rather involved activation of Src-family PTKs (SFKs). Conclusion: Abnormal LIF/STAT1 signaling represents another pathway potentially leading to overproduction of Gd-IgA1 in IgAN, providing possible explanation for the phenotype associated with chromosome 22q12 GWAS locus. Abnormal LIF/STAT1 signaling and the associated SFKs may represent potential diagnostic and/or therapeutic targets in IgAN.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
30217 - Urology and nephrology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kidney Diseases
ISSN
2296-9381
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
13
Pages from-to
168-180
UT code for WoS article
000539235000006
EID of the result in the Scopus database
—