All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

E. coli and S. aureus resist silver nanoparticles via an identical mechanism, but through different pathways

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15110%2F24%3A73628432" target="_blank" >RIV/61989592:15110/24:73628432 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989592:15310/24:73628432 RIV/61989592:15640/24:73628432

  • Result on the web

    <a href="https://www.nature.com/articles/s42003-024-07266-3" target="_blank" >https://www.nature.com/articles/s42003-024-07266-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s42003-024-07266-3" target="_blank" >10.1038/s42003-024-07266-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    E. coli and S. aureus resist silver nanoparticles via an identical mechanism, but through different pathways

  • Original language description

    Nanostructured materials with antibacterial activity face the same threat as conventional antibiotics - bacterial resistance, which reduces their effectiveness. However, unlike antibiotics, research into the emergence and mechanisms of bacterial resistance to antibacterial nanomaterials is still in its early stages. Here we show how Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria develop resistance to silver nanoparticles, resulting in an increase in the minimum inhibitory concentration from 1.69 mg/L for S. aureus and 3.38 mg/L for E. coli to 54 mg/L with repeated exposure over 12 and 6 cultivation steps, respectively. The mechanism of resistance is the same for both types of bacteria and involves the aggregation of silver nanoparticles leading to the formation of black precipitates. However, the way in which Gram-positive and Gram-negative bacteria induce aggregation of silver nanoparticles is completely different. Chemical analysis of the surface of the silver precipitates shows that aggregation is triggered by flagellin production in E. coli and by bacterial biofilm formation in S. aureus. However, resistance in both types of bacteria can be overcome by using pomegranate rind extract, which inhibits both flagellin and biofilm production, or by stabilizing the silver nanoparticles by covalently binding them to a composite material containing graphene sheets, which protects the silver nanoparticles from aggregation induced by the bacterial biofilm produced by S. aureus. This research improves the understanding of bacterial resistance mechanisms to nanostructured materials, which differ from resistance mechanisms to conventional antibiotics, and provides potential strategies to combat bacterial resistance and develop more effective antimicrobial treatments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/LX22NPO5103" target="_blank" >LX22NPO5103: National Institute of Virology and Bacteriology</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications Biology

  • ISSN

    2399-3642

  • e-ISSN

    2399-3642

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    "1552-1"-"1552-10"

  • UT code for WoS article

    001360500600007

  • EID of the result in the Scopus database

    2-s2.0-85209726002