Honesty Repeats Itself: Comparing Manual and Automated Coding on the Veracity Cues Total Details and Redundancy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15210%2F24%3A73625443" target="_blank" >RIV/61989592:15210/24:73625443 - isvavai.cz</a>
Result on the web
<a href="https://www.cambridge.org/core/journals/applied-psycholinguistics/article/honesty-repeats-itself-comparing-manual-and-automated-coding-on-the-veracity-cues-total-details-and-redundancy/02C3596C4B0A4A6D9845D711A99141B2" target="_blank" >https://www.cambridge.org/core/journals/applied-psycholinguistics/article/honesty-repeats-itself-comparing-manual-and-automated-coding-on-the-veracity-cues-total-details-and-redundancy/02C3596C4B0A4A6D9845D711A99141B2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17029/73bf0f42-b599-4c36-81b7-0c87befb795f" target="_blank" >10.17029/73bf0f42-b599-4c36-81b7-0c87befb795f</a>
Alternative languages
Result language
angličtina
Original language name
Honesty Repeats Itself: Comparing Manual and Automated Coding on the Veracity Cues Total Details and Redundancy
Original language description
Lie detection research comparing manual and automated coding of linguistic cues is limited.In Experiment 1, we attempted to extend this line of research by directly comparing theveracity differences in manual coding and two coding software programs (Text Inspector andLIWC) on the linguistic cue ‘total details’ across eight published datasets. Mixed modelanalyses revealed that LIWC showed larger veracity differences in total details than TextInspector and Manual coding. Follow-up classification analyses showed that both automatedcoding and manual coding could accurately classify honest and false accounts. In Experiment2, we examined if LIWC’s sensitivity to veracity differences was the result of honestaccounts including more redundant (repeated) words than false accounts as LIWC—but notText Inspector or Manual coding—accounts for redundancy. Our prediction was supportedand the most redundant words were function words. The results implicated that automatedcoding can detect veracity differences in total details and redundancy but it is not necessarilybetter than manual coding at accurately classifying honest and false accounts.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50101 - Psychology (including human - machine relations)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
APPLIED PSYCHOLINGUISTICS
ISSN
0142-7164
e-ISSN
1469-1817
Volume of the periodical
2024
Issue of the periodical within the volume
Online first
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
1-29
UT code for WoS article
001337070700001
EID of the result in the Scopus database
2-s2.0-85207357218