Measuring Memorization Effect in Word-Level Neural Networks Probing
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10424498" target="_blank" >RIV/00216208:11320/20:10424498 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-58323-1_19" target="_blank" >https://doi.org/10.1007/978-3-030-58323-1_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-58323-1_19" target="_blank" >10.1007/978-3-030-58323-1_19</a>
Alternative languages
Result language
angličtina
Original language name
Measuring Memorization Effect in Word-Level Neural Networks Probing
Original language description
Multiple studies have probed representations emerging in neural networks trained for end-to-end NLP tasks and examined what word-level linguistic information may be encoded in the representations. In classical probing, a classifier is trained on the representations to extract the target linguistic information. However, there is a threat of the classifier simply memorizing the linguistic labels for individual words, instead of extracting the linguistic abstractions from the representations, thus reporting false positive results. While considerable efforts have been made to minimize the memorization problem, the task of actually measuring the amount of memorization happening in the classifier has been understudied so far. In our work, we propose a simple general method for measuring the memorization effect, based on a symmetric selection of comparable sets of test words seen versus unseen in training. Our method can be used to explicitly quantify the amount of memorization happening in a probing setup,
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA18-02196S" target="_blank" >GA18-02196S: Linguistic Structure Representation in Neural Networks</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
23rd International Conference on Text, Speech and Dialogue
ISBN
978-3-030-58322-4
ISSN
0302-9743
e-ISSN
—
Number of pages
9
Pages from-to
180-188
Publisher name
Springer
Place of publication
Cham, Switzerland
Event location
Brno, Czechia
Event date
Sep 8, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—