All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F05%3A00001849" target="_blank" >RIV/61989592:15310/05:00001849 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces

  • Original language description

    In this paper we consider holomorphically projective mappings from the symmetric and recurrent equiaffine spaces An onto (pseudo-) Kählerian spaces Kn.We proved that in this case space with affine connection is holomorphically projective flat and Kn is space with constant holomorphic curvature.

  • Czech name

    O holomorfně projektivních zobrazeních ekviafinních symetrických a rekurentních prostorů na Kählerovy prostory

  • Czech description

    Studují se holomorfně projektivní zobrazení ekviafinních symetrických a rekurentních prostorů na Kählerovy prostory.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA201%2F05%2F2707" target="_blank" >GA201/05/2707: Computer-assisted research in Riemannian and affine geometry</a><br>

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Rendiconti del Circolo Matematico di Palermo

  • ISSN

    0009-725X

  • e-ISSN

  • Volume of the periodical

    75

  • Issue of the periodical within the volume

    S

  • Country of publishing house

    IT - ITALY

  • Number of pages

    8

  • Pages from-to

    309-316

  • UT code for WoS article

  • EID of the result in the Scopus database