On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F06%3A00009932" target="_blank" >RIV/61989592:15310/06:00009932 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On holomorphically projective mappings from equiaffine generally recurrent spaces onto Kählerian spaces.
Original language description
In this paper we consider holomorphically projective mappings from the special generally recurrent equiaffine spaces An onto (pseudo-) Kählerian spaces Kn. We proved that these spaces An do not admit nontrivial holomorphically projective mappings onto Kn. These results are a generalization of results by T. Sakaguchi, J. Mikeš and V.V. Domashev, which were done for holomorphically projective mappings of symmetric, recurrent and semisymmetric Kählerian spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F05%2F2707" target="_blank" >GA201/05/2707: Computer-assisted research in Riemannian and affine geometry</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archivum Mathematicum
ISSN
0044-8753
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
S
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
9
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—