All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Distributive lattices with sectionally antitone involutions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F05%3A00002149" target="_blank" >RIV/61989592:15310/05:00002149 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Distributive lattices with sectionally antitone involutions

  • Original language description

    We study upper-bounded lattices and join-semilattices that have antitone involutions in all sections. On such a (semi)lattice we introduce a binary operation the properties of which characterize the original order and antitone involutions. It turns out that certain bounded lattices with sectionally antitone involutions correspond one-to-one to MV-algebras

  • Czech name

    Distributivní svazy se sekčně antitonními involucemi

  • Czech description

    Studují se svazy a polosvazy, které mají antitonní involuce ve všech sekcích. Na takovém (polo)svazu se zavede binární operace, jejíž vlastnosti charakterizují původní uspořádání i antitonní involuce. Ukazuje se, že jisté ohraničené svazy se sekčně antitonními involucemi odpovídají MV-algebrám

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Scientiarum Mathematicum

  • ISSN

    0001-6969

  • e-ISSN

  • Volume of the periodical

    71

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    15

  • Pages from-to

    19-33

  • UT code for WoS article

  • EID of the result in the Scopus database