Near ?-lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F07%3A00004804" target="_blank" >RIV/61989592:15310/07:00004804 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Near ?-lattices
Original language description
By a near ?-lattice is meant an upper ?-semilattice where is defined a partial binary operation x ? y with respect to the induced order whenever x,y has a common lower bound. Alternatively, a near ?-lattice can be described as an algebra with one ternaryoperation satisfying nine simple conditions. Hence, the class of near ?-lattices is a quasivariety. A ?-semilattice A=(A; v) is said to have sectional (antitone) involutions if for each $ain A$ there exists an (antitone) involution on [a,1] where 1 isthe greatest element of A. If this antitone involution is a~complementation, A is called an ortho ?-semilattice. We characterize these near ?-lattices by certain identities.
Czech name
Near ?-svazy
Czech description
Near ?-svaz je horní Near ?-polosvaz, na kterém je definována parciální binární operace (na každé sekci). Tuto algebru lze axiomatizovat pomocí devíti jednoduchých axiomů tak, že třída near ?-svazů je kvazivarieta. Jsou studovány near ?-svazy se sekčnímiantitonními involucemi.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2007
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Kyungpook Mathematical Journal
ISSN
0454-8124
e-ISSN
—
Volume of the periodical
47
Issue of the periodical within the volume
1
Country of publishing house
KR - KOREA, REPUBLIC OF
Number of pages
12
Pages from-to
283-294
UT code for WoS article
—
EID of the result in the Scopus database
—