Fuzzy Horn logic I: proof theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F06%3A00003269" target="_blank" >RIV/61989592:15310/06:00003269 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/06:00002566
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Fuzzy Horn logic I: proof theory
Original language description
The paper presents generalizations of results on so-called Horn logic, well-known in universal algebra, to the setting of fuzzy logic. The theories we consider consist of formulas which are implications between identities (equations) with premises weighted by truth degrees. We adopt Pavelka style: theories are fuzzy sets of formulas and we consider degrees of provability of formulas from theories. Our basic structure of truth degrees is a complete residuated lattice. We derive a Pavelka-style completeness theorem (degree of provability equals degree of truth) from which we get some particular cases by imposing restrictions on the formulas under consideration. As a particular case, we obtain completeness of fuzzy equational logic.
Czech name
Fuzzy Horn logika I: teorie důkazů
Czech description
Prezentace výsledků zkoumání teorie Fuzzy Horn logiky.
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BD - Information theory
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/KJB1137301" target="_blank" >KJB1137301: Relational systems in presence of vagueness and uncertainty:mathematical foundations for applications</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Archive for Mathematical Logic
ISSN
0933-5846
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
49
Pages from-to
3-51
UT code for WoS article
—
EID of the result in the Scopus database
—