A Note on Axiomatizations of Pavelka-style Complete Fuzzy Logics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00436177" target="_blank" >RIV/67985807:_____/16:00436177 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2014.11.021" target="_blank" >http://dx.doi.org/10.1016/j.fss.2014.11.021</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2014.11.021" target="_blank" >10.1016/j.fss.2014.11.021</a>
Alternative languages
Result language
angličtina
Original language name
A Note on Axiomatizations of Pavelka-style Complete Fuzzy Logics
Original language description
Pavelka-style completeness, a property relating degrees of provability and truth, was previously studied mainly in the context of logics with continuous connectives. It is known that in some other logics one can use infinitary deduction rule(s) to retain this form of completeness. The present paper offers a systematic study of this idea for fuzzy logics which expand MTL and are given by a fixed standard algebra. We explore the structure of the class of all ’reasonable’ expansions of any such logic by rational truth constants and, for several prominent cases, provide axiomatizations of particular expansions enjoying the Pavelka-style completeness.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GAP202%2F10%2F1826" target="_blank" >GAP202/10/1826: Mathematical Fuzzy Logic in Computer Science</a><br>
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
292
Issue of the periodical within the volume
1 June
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
160-174
UT code for WoS article
000371786900010
EID of the result in the Scopus database
2-s2.0-84919459308