Externalization of lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F06%3A10221930" target="_blank" >RIV/61989592:15310/06:10221930 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Externalization of lattices
Original language description
Let Tau be a type of algebras. An identity s?t of type Tau is said to be externally compatible, or simply external, if the terms s and t are either the same variable or both start with the same operation symbol f of the type. A variety is called externalif all of its identities are external. For any variety V, there is a least external variety E(V) containing V, the variety determined by the set of all external identities of V. In this paper we study the algebras of the variety E(V) where V is type (2,2) variety L of lattices. We also characterize algebras in E(L) by an inflation construction.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Demonstratio Mathematica
ISSN
0420-1213
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
4
Country of publishing house
PL - POLAND
Number of pages
6
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—