All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Externalization of lattices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F06%3A10221930" target="_blank" >RIV/61989592:15310/06:10221930 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Externalization of lattices

  • Original language description

    Let Tau be a type of algebras. An identity s?t of type Tau is said to be externally compatible, or simply external, if the terms s and t are either the same variable or both start with the same operation symbol f of the type. A variety is called externalif all of its identities are external. For any variety V, there is a least external variety E(V) containing V, the variety determined by the set of all external identities of V. In this paper we study the algebras of the variety E(V) where V is type (2,2) variety L of lattices. We also characterize algebras in E(L) by an inflation construction.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Demonstratio Mathematica

  • ISSN

    0420-1213

  • e-ISSN

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    PL - POLAND

  • Number of pages

    6

  • Pages from-to

  • UT code for WoS article

  • EID of the result in the Scopus database