Tolerances as images of congruences in varieties defined by linear identities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33146377" target="_blank" >RIV/61989592:15310/13:33146377 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00012-013-0219-2" target="_blank" >http://dx.doi.org/10.1007/s00012-013-0219-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-013-0219-2" target="_blank" >10.1007/s00012-013-0219-2</a>
Alternative languages
Result language
angličtina
Original language name
Tolerances as images of congruences in varieties defined by linear identities
Original language description
An identity s = t is linear if each variable occurs at most once in each of the terms s and t. Let T be a tolerance relation of an algebra A in a variety defined by a set of linear identities. We prove that there exist an algebra B in the same variety and a congruence théta of B such that a homomorphism from B onto A maps théta onto T.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
69
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
3
Pages from-to
167-169
UT code for WoS article
000318351300004
EID of the result in the Scopus database
—