A variety containing EMV-algebras and Pierce sheaves of EMV-algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609916" target="_blank" >RIV/61989592:15310/21:73609916 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011420303626" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011420303626</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2020.09.011" target="_blank" >10.1016/j.fss.2020.09.011</a>
Alternative languages
Result language
angličtina
Original language name
A variety containing EMV-algebras and Pierce sheaves of EMV-algebras
Original language description
According to [11], we know that the class of all EMV-algebras, EMV, is not a variety, since it is not closed under the subalgebra operator. The main aim of this work is to find the least variety containing EMV. For this reason, we introduced the variety wEMV of wEMV-algebras of type (2, 2, 2, 2, 0) induced by some identities. We show that, adding a derived binary operation circle minus to each EMV-algebra (M; boolean OR, boolean AND, circle plus, 0), we extend its language, so that (M; boolean OR, &AND, circle plus, circle minus, 0), called an associated wEMV-algebra, belongs to wEMV. Then using the congruence relations induced by the prime ideals of a wEMV-algebra, we prove that each wEMV-algebra can be embedded into an associated wEMV-algebra. We show that wEMV is the least subvariety of the variety of wEMV-algebras containing EMV. Finally, we study Pierce sheaves of proper EMV-algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
418
Issue of the periodical within the volume
AUG-SI
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
25
Pages from-to
101-125
UT code for WoS article
000658282400006
EID of the result in the Scopus database
2-s2.0-85091689731