EMV-Algebras—Extended MV-Algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609920" target="_blank" >RIV/61989592:15310/21:73609920 - isvavai.cz</a>
Result on the web
<a href="https://obd.upol.cz/id_publ/333189807" target="_blank" >https://obd.upol.cz/id_publ/333189807</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-52163-9_7" target="_blank" >10.1007/978-3-030-52163-9_7</a>
Alternative languages
Result language
angličtina
Original language name
EMV-Algebras—Extended MV-Algebras
Original language description
The present paper is a survey on a new kind of algebras, called EMV-algebras, generalizing both MV-algebras and generalized Boolean algebras. The survey is based on our papers[10–13]. For these algebras a top element is not assumed a priori. Every EMV-algebra can be covered by a system of MV-algebras where each of them uses the restriction of ⊕, ∨, ∧. We prove that every such an EMV-algebra without top element can be embedded into an EMV-algebra with top element as its maximal ideal, and every EMV-algebra with top element is termwise equivalent to an MV-algebra. We show that the classes of EMV-algebras are intimately connected with subvarieties of MV-algebras. We establish a categorical equivalence of the category of EMV-algebras without top element with a special category of MV-algebras. We will study states and state-morphisms, their topological properties, a Krein–Mil’man-type representation, and an integral representation. We show also a kind of the Loomis–Sikorski theorem. Finally, we present some results on free EMV-algebras.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Trends in Logic
ISBN
978-3-030-52162-2
Number of pages of the result
26
Pages from-to
107-132
Number of pages of the book
493
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—