Variational Equations on Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F09%3A00010555" target="_blank" >RIV/61989592:15310/09:00010555 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Variational Equations on Manifolds
Original language description
The chapter is an exposition of the present state of the geometric theory of differential equations on fibred manifolds that are variational, i.e., come as equations for extremals of (generally higher-order and multiple) variational integrals. The following topics are included: Lepage forms and the first variation formula; the variational sequence, local and global aspects; ordinary differential equations in jet bundles: classification problems, structure of solutions, properties of regular equations, symmetries and conservation laws, inverse problem of the calculus of variations; geometric integration methods for variational ordinary differential equations: Noether Theorem, Liouville Theorem, Hamilton-Jacobi Theorems; variational partial differentialequations: existence and construction of Lagrangians, Hamiltonian systems, regular variational problems, Hamilton-Jacobi equation and fields of extremals, symmetries and conserved currents.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0981" target="_blank" >GA201/09/0981: Global Analysis and the Geometry of Fibred Spaces</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Advances in Mathematics Research, Vol. 9
ISBN
978-1-60692-179-1
Number of pages of the result
75
Pages from-to
—
Number of pages of the book
354
Publisher name
Nova Science Publishers, USA
Place of publication
—
UT code for WoS chapter
—