Quantitative Analysis of the Human Spindle Phosphoproteome at Distinct Mitotic Stages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F09%3A00010597" target="_blank" >RIV/61989592:15310/09:00010597 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Quantitative Analysis of the Human Spindle Phosphoproteome at Distinct Mitotic Stages
Original language description
During mitosis, phosphorylation of spindle associated proteins is a key regulatory mechanism for spindle formation, mitotic progression, and cytokinesis. In the recent past, mass spectrometry has been applied successfully to identify spindle proteomes and phosphoproteomes, but did not address their dynamics. Here, we present a quantitative comparison of spindle phosphoproteomes prepared from different mitotic stages. In total, we report the identification and SILAC based relative quantitation of 1940 unique phosphorylation sites and find that late mitosis (anaphase, telophase) is correlated with a drastic alteration in protein phosphorylation. Further statistical cluster analyses demonstrate a strong dependency of phosphorylation dynamics on kinase consensus patterns, thus, linking subgroups of identified phosphorylation sites to known key mitotic kinases. Surprisingly, we observed that during late mitosis strong dephosphorylation occurred on a significantly larger fraction of phospho-
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
ED - Physiology
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Proteome Research
ISSN
1535-3893
e-ISSN
—
Volume of the periodical
8
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—