Boolean and central elements and Cantor-Bernstein theorem in bounded pseudo-BCK-algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10212976" target="_blank" >RIV/61989592:15310/10:10212976 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Boolean and central elements and Cantor-Bernstein theorem in bounded pseudo-BCK-algebras
Original language description
Boolean and central elements of bounded pseudo-BCK-algebras are studied. Boolean elements form a largest boolean subalgebra and include central elements, which correspond one-one to direct product decompositions. Further, a Cantor-Bernstein type theoremis proved, generalizing similar results for sigma-complete MV-algebras and orthogonally sigma-complete pseudo-MV-algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Multiple-Valued Logic and Soft Computing
ISSN
1542-3980
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
3-5
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
—
UT code for WoS article
000277167200009
EID of the result in the Scopus database
—