Lattice-like structures derived from rings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F11%3A33116232" target="_blank" >RIV/61989592:15310/11:33116232 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Lattice-like structures derived from rings
Original language description
We study lattice-like operations that are term operations in certain rings with restricted powers of elements. We show that every ring with unit satisfying the identity x^{p+1} = x^p for some integer p}=1 is in fact a Boolean ring. However, if it satis es x^{p+2} = x^p for some integer p }= 2 then it need not be Boolean, but certain lattice-like operations can be introduced such that the original ring can be reconstructed by means of these operations.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Contributions to general algebra 20
ISBN
978-3-7084-0447-9
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
11-18
Publisher name
Verlag Johannes Heyn
Place of publication
Klagenfurt
Event location
Salzburg
Event date
Feb 3, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—