THE RINGS WHICH ARE BOOLEAN
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F12%3A33116823" target="_blank" >RIV/61989592:15310/12:33116823 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
THE RINGS WHICH ARE BOOLEAN
Original language description
We study unitary rings of characteristic 2 satisfying identity x^p = x for some natural number p. We characterize several infinite families of these rings which are Boolean, i.e., every element is idempotent. For example, it is in the case if p = 2n ? 2or p = 2n ? 5 or p = 2n + 1 for a suitable natural number n. Some other (more general) cases are solved for p expressed in the form 2q + 2m + 1 or 2q + 2m where q is a natural number and m ? {1, 2, . . . , 2q ? 1}.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discussiones Mathematicae - General Algebra and Applications
ISSN
1509-9415
e-ISSN
—
Volume of the periodical
31
Issue of the periodical within the volume
2
Country of publishing house
PL - POLAND
Number of pages
10
Pages from-to
175-184
UT code for WoS article
—
EID of the result in the Scopus database
—