A non-associative generalization of Hájek''s BL-algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F11%3A33116591" target="_blank" >RIV/61989592:15310/11:33116591 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.fss.2011.02.015" target="_blank" >http://dx.doi.org/10.1016/j.fss.2011.02.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2011.02.015" target="_blank" >10.1016/j.fss.2011.02.015</a>
Alternative languages
Result language
angličtina
Original language name
A non-associative generalization of Hájek''s BL-algebras
Original language description
Hájek introduced basic logic BL as the logic of continuous t-norms and their residua. Basic logic is a fuzzy logic, i.e. it is complete with respect to linearly ordered models. Algebraic semantics of BL is the variety of BL algebras. It was proved by Cignoli, Esteva, Godo and Torrens that the variety of BL algebras is generated just by the continuous t-norms on the interval [0,1] of reals. The main goal of the paper is to present a non-associative generalization of Hájek's BL logic which has a class naBL of non-associative BL algebras as its algebraic semantics. Moreover, it is shown that naBL forms a variety generated just by non-associative t-norms. Consequently, the non-associative BL logic is the logic of non-associative t-norms and their residua.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
178
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
24-37
UT code for WoS article
000293120000002
EID of the result in the Scopus database
—