Simple Proof of Basic Theorem for General Concept Lattices by Cartesian Representation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F12%3A33141902" target="_blank" >RIV/61989592:15310/12:33141902 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-34620-0_27" target="_blank" >http://dx.doi.org/10.1007/978-3-642-34620-0_27</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-34620-0_27" target="_blank" >10.1007/978-3-642-34620-0_27</a>
Alternative languages
Result language
angličtina
Original language name
Simple Proof of Basic Theorem for General Concept Lattices by Cartesian Representation
Original language description
We promote a useful representation of fuzzy sets by ordinary sets, called the Cartesian representation. In particular, we show how the main structures related to a general type of concept lattices may be reduced using this representation to their ordinary counterparts. As a consequence of this representation, we obtain a simple proof of the basic theorem for this type of concept lattices.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F10%2F0262" target="_blank" >GAP202/10/0262: Decompositions of matrices with binary and ordinal data: theory, algorithms, and complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
7647
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
12
Pages from-to
294-305
UT code for WoS article
—
EID of the result in the Scopus database
—