Impulsive system of ODEs with general linear boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33143638" target="_blank" >RIV/61989592:15310/13:33143638 - isvavai.cz</a>
Result on the web
<a href="http://www.math.u-szeged.hu/ejqtde/p2301.pdf" target="_blank" >http://www.math.u-szeged.hu/ejqtde/p2301.pdf</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Impulsive system of ODEs with general linear boundary conditions
Original language description
The paper provides an operator representation for a problem which consists of a system of ordinary differential equations of the first order with impulses at fixed times and with general linear boundary conditions z'(t) = A(t)z(t) + f(t,z(t)) for a.e. tin [a,b] subset R, z(t_i+) - z(t_i) = J_i(z(t_i)), i = 1,...,p, l(z) = c_0, c_0 in R^n. Here p,n in N, a { t_1 { ... { t_p { b, A in L^1([a,b];M_{nxn}), f in Car([a,b]xR;R^n), J_i in C(R^n;R^n), i=1,...,p, and l is a linear bounded operator on the spaceof left-continuous regulated functions on interval [a,b]. The operator l is expressed by means of the Kurzweil-Stieltjes integral and covers all linear boundary conditions for solutions of the above system subject to impulse conditions. The representation, which is based on the Green matrix to a corresponding linear homogeneous problem, leads to an existence principle for the original problem. A special case of the n-th order scalar differential equation is discussed. This approach can b
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Qualitative Theory of Differential Equations
ISSN
1417-3875
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
MAY
Country of publishing house
HU - HUNGARY
Number of pages
16
Pages from-to
1-16
UT code for WoS article
—
EID of the result in the Scopus database
—