Monadic bounded residuated lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33146190" target="_blank" >RIV/61989592:15310/13:33146190 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27510/13:86087999
Result on the web
<a href="http://dx.doi.org/10.1007/s11083-011-9236-y" target="_blank" >http://dx.doi.org/10.1007/s11083-011-9236-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11083-011-9236-y" target="_blank" >10.1007/s11083-011-9236-y</a>
Alternative languages
Result language
angličtina
Original language name
Monadic bounded residuated lattices
Original language description
Bounded integral residuated lattices form a large class of algebras which contains algebraic counterparts of several propositional logics behind many-valued reasoning and intuitionistic logic. In the paper we introduce and investigate monadic bounded residuated lattices which can be taken as a generalization of algebraic models of the predicate calculi of those logics in which only a single variables occurs.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Order
ISSN
0167-8094
e-ISSN
—
Volume of the periodical
30
Issue of the periodical within the volume
1
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
195-210
UT code for WoS article
000314720700011
EID of the result in the Scopus database
—