All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G(0)W(0), GW(0) and GW Calculations on Top of PBE and HSE06 Orbitals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33148317" target="_blank" >RIV/61989592:15310/13:33148317 - isvavai.cz</a>

  • Result on the web

    <a href="http://pubs.acs.org/doi/pdf/10.1021/ct400476r" target="_blank" >http://pubs.acs.org/doi/pdf/10.1021/ct400476r</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/ct400476r" target="_blank" >10.1021/ct400476r</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G(0)W(0), GW(0) and GW Calculations on Top of PBE and HSE06 Orbitals

  • Original language description

    The band structures of three graphene derivatives (chlorographene, fluorographene, and graphane) were analyzed at three levels of many-body GW theory (G(0)W(0), GW(0), and GW) constructed over GGA (PBE) and screened hybrid HSE06 orbitals. DFT band gap values obtained with the HSE06 functional were notably larger than those from PBE calculations but were significantly lower than band gaps from all GW calculations. On the other hand, all GW-type calculations gave similar band gaps despite some differencesin band structures. The band gap (4.9 eV at the highest GW-HSE06 level) was predicted to be smaller than that of fluorographene (8.3 eV) or graphane (6.2 eV). However, chlorographene can be considered a wide-band gap insulator analogous to fluorographene and graphane. Using the Bethe-Salpeter equation, optical absorptions of graphene derivatives were found to be at significantly lower energies due to large binding energies of excitons (1.3, 1.9, and 1.5 eV for chlorographene, fluorograp

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CF - Physical chemistry and theoretical chemistry

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Chemical Theory and Computation

  • ISSN

    1549-9618

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    4155-4164

  • UT code for WoS article

    000330096800030

  • EID of the result in the Scopus database