Variety of orthomodular posets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F14%3A33151617" target="_blank" >RIV/61989592:15310/14:33151617 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Variety of orthomodular posets
Original language description
Orthomodular posets play an important role in the so-called logical structure of a physical system as formerly pointed out by numerous authors. In particular, they play an essential role in the logic of quantum mechanics. To avoid usual problems with partial algebras, we define the so-called orthomodular directoid as an everywhere defined algebra and we show that every orthomodular poset can be converted into an orthomodular directoid and vice versa. Since orthomodular directoids are defined equationally, they form a variety having nice congruence properties.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Miskolc Mathematical Notes
ISSN
1787-2405
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
11
Pages from-to
361-371
UT code for WoS article
000348602900010
EID of the result in the Scopus database
—