n-Perfect and Q -Perfect Pseudo Effect Algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F14%3A33153343" target="_blank" >RIV/61989592:15310/14:33153343 - isvavai.cz</a>
Result on the web
<a href="http://download.springer.com/static/pdf/258/art%253A10.1007%252Fs10773-013-1723-z.pdf?auth66=1425299455_5f552e8c18a6dfc26d46a639ee34087e&ext=.pdf" target="_blank" >http://download.springer.com/static/pdf/258/art%253A10.1007%252Fs10773-013-1723-z.pdf?auth66=1425299455_5f552e8c18a6dfc26d46a639ee34087e&ext=.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-013-1723-z" target="_blank" >10.1007/s10773-013-1723-z</a>
Alternative languages
Result language
angličtina
Original language name
n-Perfect and Q -Perfect Pseudo Effect Algebras
Original language description
An n-perfect pseudo effect algebra means that it can be decomposed into n+1 comparable slices. We show that such a pseudo effect algebra satisfying a Riesz Decomposition Property type corresponds to the lexicographic product of a cyclic group 1nZ with some po-group. The analogous result will be proved for strong Q -perfect pseudo effect algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
—
Volume of the periodical
53
Issue of the periodical within the volume
10
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
3380-3390
UT code for WoS article
000341500900012
EID of the result in the Scopus database
—