Representation of perfect and n-perfect pseudo effect algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73621043" target="_blank" >RIV/61989592:15310/23:73621043 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011422003463" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011422003463</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2022.08.015" target="_blank" >10.1016/j.fss.2022.08.015</a>
Alternative languages
Result language
angličtina
Original language name
Representation of perfect and n-perfect pseudo effect algebras
Original language description
A perfect (an n-perfect) pseudo effect algebra can be decomposed into two (n + 1 many) non-empty and mutually comparable slices. They generalize perfect MV-algebras studied in [5]. We characterize such a pseudo effect algebra as an interval in the semidirect product of the po-group Z or n1 Z with a directed po-group G satisfying a stronger type of the Riesz Decomposition Property, RDP1, and the semidirect product is ordered lexicographically. We show that the category of perfect and the category of n-perfect pseudo effect algebras with RDP1 are categorically equivalent to a special category of directed po-groups satisfying RDP1.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
1872-6801
Volume of the periodical
455
Issue of the periodical within the volume
MAR
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
16
Pages from-to
19-34
UT code for WoS article
000927805900001
EID of the result in the Scopus database
2-s2.0-85136643844